skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kondracki, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 11, 2025
  2. null (Ed.)
    Illicit website owners frequently rely on traffic distribution systems (TDSs) operated by less-than-scrupulous advertising networks to acquire user traffic. While researchers have described a number of case studies on various TDSs or the businesses they serve, we still lack an understanding of how users are differentiated in these ecosystems, how different illicit activities frequently leverage the same advertisement networks and, subsequently, the same malicious advertisers. We design ODIN (Observatory of Dynamic Illicit ad Networks), the first system to study cloaking, user differentiation and business integration at the same time in four different types of traffic sources: typosquatting, copyright-infringing movie streaming, ad-based URL shortening, and illicit online pharmacy websites. ODIN performed 874,494 scrapes over two months (June 19, 2019–August 24, 2019), posing as six different types of users (e.g., mobile, desktop, and crawler) and accumulating over 2TB of data. We observed 81% more malicious pages compared to using only the best performing crawl profile by itself. Three of the traffic sources we study redirect users to the same traffic broker domain names up to 44% of the time and all of them often expose users to the same malicious advertisers. Our experiments show that novel cloaking techniques could decrease by half the number of malicious pages observed. Worryingly, popular blacklists do not just suffer from the lack of coverage and delayed detection, but miss the vast majority of malicious pages targeting mobile users. We use these findings to design a classifier, which can make precise predictions about the likelihood of a user being redirected to a malicious advertiser. 
    more » « less